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Data privacy protection is a major issue for our society nowadays due to the massive amounts of data
collected and stored by many electronic devices at all times, on social networks, in medecine, in fi-
nance and so on. This leads to multiple sources of data concerning the same individuals (persons, funds,
etc.) that can be easily aggregated in order to identify them. Therefore, privacy preserving mechanisms
have to be applied to the data before their public release which implies to quantify the amount of pri-
vacy, but also to decide a priori whether collaboration between data holders is possible/authorized or
unadvisable/forbidden.

Local differential privacy The concept of differential privacy (see Dinur and Nissim 2003, Dwork
2008, Dwork and Nissim 2004, Dwork et al. 2006, Evfimievski et al. 2003) provides a rigorous formal-
ism to randomize data and quantify the amount of privacy. We consider n individuals with outcomes
X1, . . . , Xn supposed to be i.i.d. with common probability distribution P ∈ P . This is called the
original data and we need to produce a randomized observation Z that the statistician is allwoed to
use in order to recover information about the distribution P . The conditional distribution of Z given
X = (X1, . . . , Xn) is denoted by Q and referred to as a channel distribution or a privatization scheme,
i.e. Pr(Z ∈ A|X = x) = Q(A|x).
We will introduce the notion of α−differential privacy for some α ∈ (0,∞). We distinguish global (or
central) differential privacy when the privacy mechanism uses all the original data, vs. local differential
privacy when each sample from the original data is privatized on the user’s local machine before its
release. In the sequel, we consider only the setup of local differential privacy (LDP) where slower rates
are typically attained as compared to the optimal procedures that use the original data.

Estimation of the probability density function Next, we discuss recent results on non-parametric
estimation of the common probability distribution f of P (Duchi et al., 2018, Rohde and Steinberger,
2019, Butucea et al. 2020). We construct α−LDP privacy mechanisms and build projection estimators
(histogram and wavelet estimators) that are minimax optimal (up to log factors) when the function f
belongs to Besov s−smoothness classes. Optimality is shown with respect to all estimators but also
with respect to all possible α−LDP privacy mechanisms Q. Thus, sequentially interactive privacy
mechanisms that use at each step i Xi together with the previously released Z1, ..., Zi−1, may provide
more flexibility but do not improve over non-interactive ones, that use onlyXi at each step i. We discuss
adaptive methods to the smoothness s and new elbow effects.

Goodness-of-fit tests Finally, we address the non-parametric goodness-of-fit problem of testing whether
f ≡ f0 for some given smooth f0 vs. ‖f − f0‖2 ≥ ρ. The goal is to determine the optimal separation
rate ρ in the α−LDP context, that is the value separating the set of functions f undistinguishable from
f0 from the set of functions f far enough from f0 so that we can build tests with error probabilities
tending to 0. A related problem that we also discuss is the estimation of the quadratic functional

∫
f2.

We discuss in more details information theoretic inequalities and describe the lower bounds techniques
(Duchi et al., 2013, Lam-Weil et al. 2020). It is highly surprising that sequentially interactive privacy
mechanisms lead to faster minimax rates than non-interactive ones in these problems (Butucea et al.
2020). Similar behaviour can be found in the goodness-of-fit test of a given discrete distribution (Berrett
and Butucea, 2020).
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